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Abstract. In this article, we study the nonlinear Steklov boundary-value problem

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u
∂ν

= f (x, u) on ∂Ω.

We prove the existence of infinitely many non-negative solutions of the problem by
applying a general variational principle due to B. Ricceri and the theory of the variable
exponent Sobolev spaces.
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1 Introduction

Motivated by the developments in elastic mechanics, electrorheological fluids and image
restoration [4, 16, 17, 20, 21], the interest in variational problems and differential equations
with variable exponent has grown in recent decades; see for example [6, 12, 13, 15]. We refer
the reader to [3, 7, 8, 18, 19] for developments in p(x)-Laplacian equations.

The purpose of this article is to study the existence and multiplicity of solutions for the
Steklov problem involving the p(x)-Laplacian,

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u
∂ν

= f (x, u) on ∂Ω.
(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, ∂u
∂ν is the outer unit normal derivative

on ∂Ω, p is a continuous function on Ω with N < p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) <
+∞ and f : ∂Ω×R → R is a continuous function. The main interest in studying such prob-
lems arises from the presence of the p(x)-Laplace operator div(|∇u|p(x)−2∇u), which is a

BCorresponding author. Email: allaoui19@hotmail.com



2 M. Allaoui, A. El Amrouss, A. Ourraoui

generalization of the classical p-Laplace operator div(|∇u|p−2∇u) obtained in the case when
p is a positive constant. Many authors have studied the inhomogeneous Steklov problems
involving the p-Laplacian [14]. The authors have studied this class of inhomogeneous Steklov
problems in the cases of p(x) ≡ p = 2 and of p(x) ≡ p > 1, respectively. From now, we put
X = W1,p(x)(Ω) and w := 2πN/2

NΓ( N
2 )

the measure of the N-dimensional unit ball.

The main results of this paper are as follows.

Theorem 1.1. We assume that f (x, t) = 0 for all t ≤ 0, a.e x ∈ ∂Ω, and infη≥0 F(x, η) ≥ 0 for a.e.
x ∈ ∂Ω. Moreover, suppose that there exist two sequences {ak}k∈N and {bk}k∈N in (0,+∞) with
ak < bk, limk→+∞ bk = +∞ such that

(1) limk→+∞
bp−

k

ap++β
k

= +∞ for some non-negative constant β;

(2) maxΩ×[ak ,bk ]
f ≤ 0 for all k ∈N;

(3) there exists a sequence {ξk}k∈N ⊂ R such that limk→+∞ ξk = +∞ and a constant h0 > |Ω|
p−|∂Ω| ,

such that F(x, ξk) ≥ h0ξ
p+

k for a.e. x ∈ ∂Ω;

(4) lim supk→+∞
max∂Ω×[0,ak ]

F(x,η)

bp−
k

< 1
Cp−

0 p+|∂Ω|
, where C0 = supu∈X\{0}

|u|∞
‖u‖ .

Then problem (1.1) admits an unbounded sequence of non-negative weak solutions in X.

Theorem 1.2. We assume that f (x, t) = 0 for all t ≤ 0, a.e. x ∈ ∂Ω, and infη≥0 F(x, η) ≥ 0 for
a.e. x ∈ ∂Ω. Moreover, suppose that there exist two sequences {ak}k∈N and {bk}k∈N in (0,+∞) with
ak < bk, limk→+∞ bk = 0 such that

(1) limk→+∞
bp−

k

ap−−α
k

= +∞ for some non-negative constant α < p−;

(2) maxΩ×[ak ,bk ]
f ≤ 0 for all k ∈N;

(3) there exists a sequence {ξk}k∈N ⊂ R such that limk→+∞ ξk = 0+ and a constant h0 > |Ω|
p−|∂Ω| ,

such that F(x, ξk) ≥ h0ξ
p−

k for a.e. x ∈ ∂Ω;

(4) lim supk→+∞
max∂Ω×[0,ak ]

F(x,η)

bp−
k

< 1
Cp−

0 p+|∂Ω|
, where C0 = supu∈X\{0}

|u|∞
‖u‖ .

Then problem (1.1) admits a sequence of non-zero non-negative weak solutions, which strongly con-
verges to 0 in X.

Example 1.3. An example of functions satisfying the assumptions of Theorem 1.1

F(x, t) =

e2z(x) ln 2h(x)
(

t−bk
ak+1−bk

)z(x)( ak+1−t
ak+1−bk

)z(x)
tq(x), if t ∈ (bk, ak+1);

0, otherwise,

where h ∈ C(Ω) with minx∈Ω h(x) ≥ h0, z ∈ C(Ω) with minx∈Ω z(x) > 1 and q ∈ C(Ω) with
p+ ≤ q(x) ≤ p+ + β for all x ∈ Ω. Note that in this occasion we can choose ξk =

ak+1+bk
2 .
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Example 1.4. An example of functions satisfying the assumptions of Theorem 1.2

F(x, t) =

e2z(x) ln 2h(x)
(

t−bk+1
ak−bk+1

)z(x)( ak−t
ak−bk+1

)z(x)
tq(x), if t ∈ (bk+1, ak);

0, otherwise,

where h ∈ C(Ω) with minx∈Ω h(x) ≥ h0, z ∈ C(Ω) with minx∈Ω z(x) > 1 and q ∈ C(Ω) with
p− − α ≤ q(x) ≤ p− for all x ∈ Ω. Note that in this occasion we can choose ξk =

bk+1+ak
2 .

Existence of infinitely many solutions for boundary value problems have received a great
deal of interest in recent years, see, for instance, the paper [2, 5] and references therein. In
[1] we have considered the existence and multiplicity of solutions for the Steklov problem
involving the p(x)-Laplacian of the type

(S)
{

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u
∂ν = λ f (x, u) on ∂Ω.

Under the following assumptions of the function f ,

( f1) | f (x, s) |≤ a(x) + b | s |α(x)−1, ∀(x, s) ∈ ∂Ω×R,

where a(x) ∈ L
α(x)

α(x)−1 (∂Ω) and b ≥ 0 is a constant, α(x) ∈ C+(∂Ω).

( f2) f (x, t) < 0 , when |t| ∈ (0, 1),
f (x, t) ≥ m > 0 , when t ∈ (t0, ∞), t0 > 1,

we have established the existence of at least three solutions of this problem.
This article is organized as follows. First, we will introduce some basic preliminary results

and lemmas in Section 2. In Section 3, we will give the proofs of our main results.

2 Preliminaries

For completeness, we first recall some facts on the variable exponent spaces Lp(x)(Ω) and
Wk,p(x)(Ω). For more details, see [9, 10]. Suppose that Ω is a bounded open domain of RN

with smooth boundary ∂Ω and p ∈ C+(Ω) where

C+(Ω) =

{
p ∈ C(Ω) and inf

x∈Ω
p(x) > 1

}
.

Denote by p− := infx∈Ω p(x) and p+ := supx∈Ω p(x). Define the variable exponent Lebesgue
space Lp(x)(Ω) by

Lp(x)(Ω) =

{
u : Ω→ R is a measurable and

∫
Ω
|u|p(x)dx < +∞

}
,

with the norm

|u|p(x) = inf
{

τ > 0;
∫

Ω

∣∣∣u
τ

∣∣∣p(x)
dx ≤ 1

}
.

Define the variable exponent Sobolev space W1,p(x)(Ω) by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

,
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with the norm

‖u‖ = inf

{
τ > 0;

∫
Ω

(∣∣∣∣∇u
τ

∣∣∣∣p(x)

+
∣∣∣u
τ

∣∣∣p(x)
)

dx ≤ 1

}
,

‖u‖ = |∇u|p(x) + |u|p(x).

We refer the reader to [9, 10] for the basic properties of the variable exponent Lebesgue and
Sobolev spaces.

Lemma 2.1 ([10]). Both (Lp(x)(Ω), | · |p(x)) and (W1,p(x)(Ω), ‖ · ‖) are separable and uniformly
convex Banach spaces.

Lemma 2.2 ([10]). Hölder inequality holds, namely∫
Ω
|uv| dx ≤ 2|u|p(x)|v|q(x) ∀u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω),

where 1
p(x) +

1
q(x) = 1.

Lemma 2.3 ([10]). Let I(u) =
∫

Ω

(
|∇u|p(x) + |u|p(x)) dx, for u ∈W1,p(x)(Ω) we have

• ‖u‖ < 1(= 1,> 1)⇔ I(u) < 1(= 1,> 1);

• ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ I(u) ≤ ‖u‖p− ;

• ‖u‖ ≥ 1⇒ ‖u‖p− ≤ I(u) ≤ ‖u‖p+ .

Lemma 2.4 ([9]). Assume that the boundary of Ω possesses the cone property and p ∈ C(Ω) and
1 ≤ q(x) < p∗(x) for x ∈ Ω, then there is a compact embedding W1,p(x)(Ω) ↪→ Lq(x)(Ω), where

p∗(x) =

{ Np(x)
N−p(x) , if p(x) < N;

+∞, if p(x) ≥ N.

Lemma 2.5 ([9]). The embedding W1,p(x)(Ω) ↪→ C(Ω) is compact whenever N < p−.

Lemma 2.6 ([11]). Let X be a separable and reflexive real Banach space, φ, ψ : X → R be two se-
quentially weakly lower semicontinuous and Gâteaux differentiable functionals. Assume also that φ is
(strongly) continuous and satisfies lim‖u‖→+∞ φ(u) = +∞. For each ρ > infX φ, put

ϕ(ρ) = inf
x∈φ−1((−∞,ρ))

ψ(x)− inf
φ−1((−∞,ρ))w

ψ

ρ− φ(x)
,

where φ−1((−∞, ρ))w is the closure of φ−1((−∞, ρ))w in the weak topology.

1. If there exist a sequence {rk} ⊂ (infX φ,+∞) with rk → +∞ and a sequence {uk} ⊂ X such
that for each k ∈N,

φ(uk) < rk (2.1)

and
ψ(uk)− inf

φ−1((−∞,ρ))w

ψ < rk − φ(uk), (2.2)

and in addition,
lim inf
‖u‖→+∞

(φ(u) + ψ(u)) = −∞, (2.3)

then there exists a sequence {vk} of local minima of φ + ψ such that φ(vk)→ +∞ as k→ +∞.
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2. If there exist a sequence {rk} ⊂ (infX φ,+∞) with rk → (infX φ)+ and a sequence {uk} ⊂ X
such that for each k the conditions (2.1) and (2.2) are satisfied, and in addition, every global mini-
mizer of φ is not a local minimizer of φ+ψ, then there exists a sequence {vk} of pairwise distinct
local minimizers of φ + ψ such that limk→+∞ φ(vk) = infX φ, and {vk} weakly converges to a
global minimizer of φ.

Definition 2.7. We say that u ∈ X is a weak solution of (1.1) if∫
Ω
|∇u|p(x)−2∇u∇v dx +

∫
Ω
|u|p(x)−2uv dx =

∫
∂Ω

f (x, u)v dσ for all v ∈ X.

For each u ∈ X, we define

φ(u) =
∫

Ω

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx,

ψ(u) = −
∫

∂Ω
F(x, u) dσ,

J(u) = φ(u) + ψ(u),

where F(x, t) =
∫ t

0 f (x, s) ds. Then we have

〈φ′(u), v〉 =
∫

Ω

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2uv

)
dx,

〈ψ′(u), v〉 = −
∫

∂Ω
f (x, u)v dσ,

for all v ∈ X.
Then it is easy to see that φ, ψ ∈ C1(X, R) and u ∈ X is a weak solution of (1.1) if and only

if u is a critical point of the functional J.
Notice that φ is convex and continuous functional so it is a weakly lower semi-continuous.

Since the embedding X ↪→ C(Ω) is compact, we can see that ψ : X → R is sequentially weakly
lower semi-continuous.

3 Proof of main results

For the proof of Theorems 1.1 and 1.2, we will use Lemma 2.6. We start with the following
lemmas.

Lemma 3.1. φ is coercive.

Proof. When ‖u‖ ≥ 1, we have

φ(u) =
∫

Ω

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx ≥ 1

p+
‖u‖p− , (3.1)

then φ is coercive. The proof is completed.

Since φ : X → R is coercive we can define K(r) as

K(r) = inf
{

τ > 0 : φ−1((−∞, r)) ⊂ BX(0, τ)
}

, (3.2)

for r > infX φ, where
BX(0, τ) = {u ∈ X : ‖u‖ < τ},
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BX(0, τ) denotes the closure of BX(0, τ) in X. Since φ is coercive, we know 0 < K(r) < +∞
for each r > infX φ. From the definition of K(r), we have φ−1((−∞, r)) ⊂ BX(0, K(r)) and
consequently φ−1((−∞, r))w ⊂ BX(0, K(r)). Since the embedding X ↪→ C(Ω) is compact, so
there is a constant C0 > 0 such that

C0 = sup
u∈X\{0}

|u|∞
‖u‖ .

Therefore we have
BX(0, K(r)) ⊂ {u ∈ C(Ω) : |u|∞ ≤ C0K(r)}.

So we have
inf

v∈φ−1((−∞,r))w

ψ(v) ≥ inf
‖v‖≤K(r)

ψ(v) ≥ inf
|v|∞≤C0K(r)

ψ(v). (3.3)

Lemma 3.2. For r ≥ 1
p+ , we have

K(r) ≤
(

rp+
) 1

p− . (3.4)

Proof. Let r ≥ 1
p+ and u ∈ X be such that φ(u) < r. When ‖u‖ ≥ 1, by (3.1), we obtain

r > φ(u) ≥ 1
p+
‖u‖p− ,

thus we have ‖u‖ <
(
rp+

) 1
p− . When ‖u‖ < 1, it is clear that

‖u‖ < 1 ≤ rp+,

which implies that ‖u‖ <
(
rp+

) 1
p− . By the definition of K(r), (3.4) holds.

Proof of Theorem 1.1. We use Lemma 2.6(1) to prove Theorem 1.1.

Now put rk = 1
p+

(
bk
C0

)p−

, then limk→+∞ rk = +∞. Using Lemma 3.2, we have C0K(rk) ≤ bk.

Fix x0 ∈ Ω and pick γ > 0 such that B(x0, γ) ⊆ Ω.
By condition (2), we have max∂Ω×[0,ak ] F = max∂Ω×[0,bk ] F. Now we consider the function

uk ∈ X defined by

uk =


0, if x ∈ Ω\B(x0, γ);

ηk, if x ∈ B(x0, γ
2 );

2ηk
γ

(
γ− |x− x0|

)
, if x ∈ B(x0, γ)\B(x0, γ

2 ) ,

(3.5)

with ηk ∈ (0, ak] and xk ∈ ∂Ω such that F(xk, ηk) = max∂Ω×[0,ak ] F. Without loss of generality,
we may assume that ηk ≥ max(γ, 1). In view of condition (1), we choose k1 ∈N such that

bp−

k

ap+
k

>
p+Cp−

0 wγN−p+

p−2N

[
2p+(2N − 1) + 2Nγp+

]
, (3.6)

for all k > k1. For each k > k1, using (3.6), we have
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φ(uk) =
∫

Ω

1
p(x)

(
|∇uk|p(x) + |uk|p(x)

)
dx

≤ 1
p−

[∫
Ω
|∇uk|p(x) dx +

∫
Ω
|uk|p(x) dx

]
≤ 1

p−

[(2ηk

γ

)p+[∣∣B(x0, γ
)∣∣− ∣∣B(x0,

γ

2
)∣∣]+ ∫

B(x0,γ)
|uk|p(x) dx

]
≤

2p+η
p+

k wγN

p−γp+

(
1− 1

2N

)
+

η
p+

k wγN

p−

=
η

p+

k wγN

p−γp+2N

[
2p+
(

2N − 1
)
+ 2Nγp+

]
≤

ap+

k wγN

p−γp+2N

[
2p+
(

2N − 1
)
+ 2Nγp+

]
< rk.

Then for each k > k1, we have
φ(uk) < rk. (3.7)

For each v ∈ φ−1((−∞, rk)), we can easily see that for each x ∈ ∂Ω

F(x, v(x)) ≤ max
∂Ω×[0,C0K(rk)]

F(x, v)

≤ max
∂Ω×[0,bk ]

F(x, v)

= max
∂Ω×[0,ak ]

F(x, v)

= F(xk, ηk).

By condition (4), there exists a k2 ∈N such that

max∂Ω×[0,ak ] F(x, η)

bp−
k

=
F(xk, ηk)

bp−
k

<
1

Cp−
0 p+|∂Ω|

, (3.8)

for every k > k2. Since limk→+∞
η

p+

k

bp−
k

= 0 and (3.8), for every k > k2, we have

F(xk, ηk) +
η

p+

k wγN

|∂Ω|p−γp+2N

[
2p+
(

2N − 1
)
+ 2Nγp+

]
bp−

k

<
1

Cp−
0 p+|∂Ω|

. (3.9)

Therefore, using (3.9), we obtain

sup
v∈C(Ω),|v|∞≤C0K(rk)

∫
∂Ω

F(x, v(x)) dσ−
∫

∂Ω
F(x, uk(x)) dσ

≤ F(xk, ηk)|∂Ω|

<
bp−

k

Cp−
0 p+

−
η

p+

k wγN

p−γp+2N

[
2p+
(

2N − 1
)
+ 2Nγp+

]
≤ rk − φ(uk),
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for each k > k2. Then for every k > k2, we have

sup
v∈C(Ω),|v|∞≤C0K(rk)

∫
∂Ω

F(x, v(x)) dσ−
∫

∂Ω
F(x, uk(x)) dσ < rk − φ(uk). (3.10)

In view of (3.7) and (3.10), for each k > max{k1, k2}, we have proved (2.1) and (2.2). We
need to verify that the functional φ + ψ has no global minimum, i.e. (2.3). By condition (3),
we can find a sequence {ξk}k∈N ⊂ R such that limk→+∞ ξk = +∞ and F(x, ξk) ≥ h0ξ

p+
k for

a.e. x ∈ ∂Ω. Now we consider a function wk ∈ X defined by wk(x) = ξk. Without loss of
generality, we may assume that ξk ≥ 1. So we have

φ(wk) + ψ(wk) ≤
ξ

p+

k |Ω|
p−

− h0ξ
p+

k |∂Ω|

≤ ξ
p+

k |∂Ω|
(
|Ω|

p−|∂Ω| − h0

)
.

Since h0 > |Ω|
p−|∂Ω| . It forces

lim
k→+∞

ξ
p+

k |∂Ω|
(
|Ω|

p−|∂Ω| − h0

)
= −∞.

Therefore, Lemma 2.6(1) assures that there is a sequence {vk}k∈N of local minima of φ + ψ

such that φ(vk)→ +∞ as k→ +∞.
It remains to show that the weak solutions obtained are non-negative.
Define

f+(x, t) =

{
f (x, t), if t ≥ 0;

0, otherwise,

and consider the following problem

(S+)
{

∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u
∂ν = f+(x, u) on ∂Ω,

if u is weak solution of the problem (S+), then one has∫
Ω
|∇u|p(x)−2∇u∇v dx +

∫
Ω
|u|p(x)−2uv dx−

∫
∂Ω

f+(x, u)v dσ = 0, (3.11)

for all v ∈ X. Taking v = u− in (3.11) shows that ‖u−‖ = 0, so u− = 0. Obviously, u is a
non-negative solution of (1.1) in X. This completes the proof.

Proof of Theorem 1.2. We use Lemma 2.6(2) to prove Theorem 1.2.

We put rk =
1

p+
( bk

C0

)p− , and consider the function uk ∈ X defined by

uk =


0, if x ∈ Ω\B(x0, γ);

ηk, if x ∈ B(x0, γ
2 );

2ηk
γ (γ− |x− x0|), if x ∈ B(x0, γ)\B(x0, γ

2 ) .

(3.12)

We can easily get (2.1) and (2.2) using the same method as in the proof of Theorem 1.1. In
view of condition (3), we can find a sequence {ξk}k∈N ⊂ R such that limk→+∞ ξk = 0+ and
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F(x, ξk) ≥ h0ξ
p−

k for a.e. x ∈ ∂Ω. If we take wk = ξk, of course the sequence {wk} strongly
converges to 0 in X and φ(wk) + ψ(wk) < 0 for all k ∈ N. Since φ(0) + ψ(0) = 0, this means
that 0 is not a local minimum of φ + ψ.

So, since 0 is the only global minimum of φ. Lemma 2.6(2) ensures that there exists a
sequence {vk} of pairwise distinct local minimizers of φ + ψ such that limk→+∞ φ(vk) = 0.
Using the same method as in the proof of Theorem 1.1, we can get that each weak solution of
problem (1.1) is non-negative. This completes the proof.
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